https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Electromagnetic-guided MLC tracking radiation therapy for prostate cancer patients: prospective clinical trial results https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:44516 95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. Results: All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. Conclusions: Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed.]]> Wed 09 Nov 2022 10:02:12 AEDT ]]> Toward real-time verification for MLC tracking treatments using time-resolved EPID imaging https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:48039 Error). For simulated field size errors, the RMSError was 0.47 cm2 and field shape changes were detected for random errors with standard deviation ≥ 2.5 mm. For clinical lung SABR deliveries, field location errors of 1.6 mm (parallel MLC motion) and 4.9 mm (perpendicular) were measured (expressed as a full-width-half-maximum). The mean and standard deviation of the errors in field size and shape were 0.0 ± 0.3 cm2 and 0.3 ± 0.1 (expressed as a translation-invariant normalized RMS). No correlation was observed between geometric errors during each treatment fraction and dosimetric errors in the reconstructed dose to the target volume for this cohort of patients. Conclusion: A system for real-time delivery verification has been developed for MLC tracking using time-resolved EPID imaging. The technique has been tested offline in phantom-based deliveries and clinical patient deliveries and was used to independently verify the geometric accuracy of the MLC during MLC tracking radiotherapy.]]> Thu 23 Mar 2023 10:25:03 AEDT ]]> Geometric uncertainty analysis of MLC tracking for lung SABR https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:39998 Fri 15 Jul 2022 11:01:56 AEST ]]>